

Project Overview

Overall Goal:

Develop and validate advanced catalytic materials and systems for purifying flue gas from pressurized oxycombustion (OC) to meet CO_2 purity specifications for EOR and improve performance over 1st-generation OC

Typical flue gas composition from OC boilers ^[1]		CO ₂ purity requirements for EOR ^[2]	
Component	Composition	Component	Limit
O ₂	2.9 vol%	CO ₂	≥95 vol%
N_2	0.6 vol%	N_2	1 vol%
Ar	3.3 vol%	Ar	1 vol%
CO ₂	63.0 vol%	H ₂ O	300 ppm wt
H_2O	29.4 vol%	O ₂	100 ppmv
SO ₂	1,000-8,000 ppmv	SO ₂	100 ppmv
NO _x	~400 ppmv	NO _x	100 ppmv
Refs: 1) Internal simulation results; 2) DOE/NETL. Quality Guidelines for Energy System Studies: CO ₂		CO	35 ppmv
		H_2	1 vol%
		CH_4	1 vol%
Impurity Design Parameters.		C_2H_6	1 vol%
August 2013.		C ₃ +	1 vol%

Specific Objectives (1/1/2017 to 12/31/2019):

- Develop high-performance supported catalysts and a reverse flow fixed-bed reactor (RFFB) design for O₂ removal via direct reduction by CH_4 ;
- Develop multifunctional catalytic packing materials and a catalytic direct contact cooler (DCC) design for enhanced oxidation and removal of NO and Hg;
- Fabricate and test a small bench-scale RFFB and a catalytic DCC with a slipstream of flue gas from the Staged Pressurized Oxy-Combustion (SPOC) testing facility at Washington University in St. Louis (WUSTL);
- Characterize the fate and transformation of Hg, heavy metals, and major gas species in flue gas from the SPOC facility; and
- Perform a high-level techno-economic analysis for the catalytic flue gas purification technology integrated into a conceptual 550-MWe SPOC plant

Technology Background

Technical Gaps for State-of-the-Art OC Flue Gas Purification:

- O₂ removal: Known commercial catalysts or scavengers are suitable only for trace amounts of O_2 (<~1,000 ppmv);
- **NO removal**: Mismatching reaction times between SO₂ and NO removal in a regular DCC (~10 vs.100 s for 90% removal)
- **Hg removal**: A regular DCC is not highly effective to capture elemental Hg; potential Hg reemission issue in DCC water neutralization unit (similar to a wet scrubber)
- **Hg speciation**: Emissions, fates & transformation of Hg and heavy metals are not well known for pressurized OC systems
- **Novel Catalytic Approaches to Overcome Technical Gaps:** O₂ removal via catalytic reduction
- NO/SO₂/Hg removal with catalytic oxidation

⁻ (Units highlighted in blue are focuses of the current project)

Catalytic Removal of Oxygen and Pollutants in Exhaust Gases from Pressurized Oxy-Combustors

Yongqi Lu¹, Seyed Dastgheib¹, Hong Lu¹, Hafiz Salih¹, David Ruhter¹, Hong Yang², Andrew Kuhn², Pratim Biswas³, Sungyoon Jung³, Tom Machalek⁴, Bill Steen⁴

¹ Illinois State Geological Survey, University of Illinois at Urbana-Champaign; ² Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign; ³ Department of Energy, Environmental & Chemical Engineering, Washington University in St Louis; ⁴ AECOM

(Increasing steam from 0.25 to 10% halves CO concentration)

Future Work

	Co
	Syı
	nor
	cat
•	Со
	a b
	sel

TEM micrographs of a Pd-based catalyst (left) and a Pd/Au alloy catalyst (right); uniform size of 5.6 nm for Pd and 2.7 nm for PdAu nanoparticles

Performance Screening of Metal Catalysts for O₂ Reduction: Activity and selectivity of synthesized catalysts are under screening evaluation

A 0.28-in ID and 19-in long differential fixed-bed reactor (rated at 250 bar & 1,000 °F) used for the screening testing

Schematic (a) and photograph (b) of the differential fixed-bed reactor

(2) Development of Catalysts & System for Enhanced NO/Hg **Oxidation in DCC**

Synthesis of Carbon-Based Catalysts for NO/Hg Oxidation:

- Initial efforts are focused on surface modifications for 4 commercially available granular activated carbons:
- $\sqrt{10}$ Bituminous coal-based (Filtrasorb400, Calgon Carbon)
- $\sqrt{\text{Coconut shell-based (GC 4X8SA, General Carbon)}}$
- \sqrt{W} Wood-based (Nuchar, MeadWestvaco)
- $\sqrt{\text{Sulfur-impregnated (GC-IPSg, General Carbon)}}$ Surface treatment approaches:
- $\sqrt{1}$ Introduction of N functional groups by melamine treatment $\sqrt{1}$ Incorporation of Cu and CeO₂ catalysts by impregnation $\sqrt{\text{Growth of carbon nanofibers by C}_2\text{H}_2}$ chemical vapor deposition on surface of carbon-Cu/CeO₂
- $\sqrt{4}$ Hydrophobic modification by introduction of silane functionalities or methyl groups

Design, Fabrication, & Testing of a Bench-Scale Catalytic DCC A catalytic DCC (0.5-3 inch ID by 1-2 ft length) capable of treating 1–10 SLPM flue gas under 16 bar is in progress Performance of synthesized carbon materials to be tested

Schematic of a bench-scale DCC packed with a carbon-based catalyst

ontinue DFT modeling to guide catalysts development nthesis optimization and screening testing of noble and on-noble metal catalysts for O_2 reduction and carbon-based talysts for enhanced NO/Hg oxidation

omplete design and fabrication of a bench-scale RFFB and pench-scale catalytic DCC system and conduct testing with lected catalytic materials

Acknowledgement

DOE/NETL support thru Cooperative Agreement DE-FE0029161